Upscaling CH4 Fluxes Using High-Resolution Imagery in Arctic Tundra Ecosystems

نویسندگان

  • Scott J. Davidson
  • Maria João Santos
  • Victoria L. Sloan
  • Kassandra Reuss-Schmidt
  • Gareth K. Phoenix
  • Walter C. Oechel
  • Donatella Zona
چکیده

Arctic tundra ecosystems are a major source of methane (CH4), the variability of which is affected by local environmental and climatic factors, such as water table depth, microtopography, and the spatial heterogeneity of the vegetation communities present. There is a disconnect between the measurement scales for CH4 fluxes, which can be measured with chambers at one-meter resolution and eddy covariance towers at 100–1000 m, whereas model estimates are typically made at the ~100 km scale. Therefore, it is critical to upscale site level measurements to the larger scale for model comparison. As vegetation has a critical role in explaining the variability of CH4 fluxes across the tundra landscape, we tested whether remotely-sensed maps of vegetation could be used to upscale fluxes to larger scales. The objectives of this study are to compare four different methods for mapping and two methods for upscaling plot-level CH4 emissions to the measurements from EC towers. We show that linear discriminant analysis (LDA) provides the most accurate representation of the tundra vegetation within the EC tower footprints (classification accuracies of between 65% and 88%). The upscaled CH4 emissions using the areal fraction of the vegetation communities showed a positive correlation (between 0.57 and 0.81) with EC tower measurements, irrespective of the mapping method. The area-weighted footprint model outperformed the simple area-weighted method, achieving a correlation of 0.88 when using the vegetation map produced with the LDA classifier. These results suggest that the high spatial heterogeneity of the tundra vegetation has a strong impact on the flux, and variation indicates the potential impact of environmental or climatic parameters on the fluxes. Nonetheless, assimilating remotely-sensed vegetation maps of tundra in a footprint model was successful in upscaling fluxes across scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cold season emissions dominate the Arctic tundra methane budget.

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% ...

متن کامل

Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets

Multi-scale modeling of Arctic tundra vegetation requires characterization of the heterogeneous tundra landscape, which includes representation of distinct plant functional types (PFTs). We combined high-resolution multi-spectral remote sensing imagery from the WorldView-2 satellite with light detecting and ranging (LiDAR)-derived digital elevation models (DEM) to characterize the tundra landsc...

متن کامل

Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem

The functioning of Arctic ecosystems is not only critically affected by climate change, but it also has the potential for major positive feedback on climate. There is, however, relatively little information on the role, patterns, and vulnerabilities of CO2 fluxes during the nonsummer seasons in Arctic ecosystems. Presented here is a year-round study of CO2 fluxes in an Alaskan Arctic tussock tu...

متن کامل

A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO<sub>2</sub> and CH<sub>4</sub> fluxes

The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing app...

متن کامل

Methane emissions from two tundra wetlands in eastern Antarctica

During the summertime of 2005/2006 net methane ðCH4Þ fluxes and environmental variables were investigated in two tundra wetlands Wolong Marsh and Tuanjie Marsh of eastern Antarctica, using the closed chamber technique. At Wolong Marsh, the measurements were made at four wet tundra sites, four mesic tundra sites, and two dry sites. CH4 flux for wet tundra sites averaged 163:4mgm 2 h 1 and for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017